

Academic year

2016-17 Subject 11005 - Introduction to Complex

Systems

Group Group 1, 1S

Teaching guide Α Language English

Subject identification

Subject 11005 - Introduction to Complex Systems

Credits 0.75 de presencials (18.75 hours) 2.25 de no presencials (56.25 hours) 3 de

totals (75 hours).

Group Group 1, 1S First semester Teaching period Teaching language English

Professors

Horari d'atenció als alumnes

Lecturers							
Lecturers	Starting time	Finishing time	Day	Start date	Finish date	Office	
Emilio Hernandez Garcia	You need to book a date with the professor in order to attend a tutorial.						
ehg899@uib.es	Tou need to book a date with the professor in order to attend a tatorial.						
Maximino San Miguel Ruibal		You need to book a date with the professor in order to attend a tutorial.					
msr260@uib.es		rou need to book a date with the professor in order to attend a tatorial.					
Roberta Zambrini -		You need to book	a date with t	he professor in order	to attend a tutorial.		

Contextualisation

This is one of the compulsory courses of the Structural Module of the Master in Physics of Complex Systems. The objective is to provide an overview of different topics that will be developed in specific courses in order to give to the students a global view of the contents of the Master.

Requirements

There are not specific requirements, being an introductory course.

Skills

Specific

* General understanding on key concepts of Complex Systems, such as collective phenomena, emergence, nonlinearity, thresholds, criticality, multi-scale phenomena, power laws and measures of complexity.

Generic

* To be able to describe, both mathematically and physically, complex systems in different situations (TG1).

1/4

Academic year 2016-17

Subject 11005 - Introduction to Complex

Systems

Group 1, 1S

Teaching guide A Language English

* To acquire the capacity to develop a complete research plan covering from the bibliographic research and strategy to the conclusions (TG2).

- * To write and describe rigorously the research process and present the conclusions to an expert audience (TG3).
- * To acquire the ability to ask questions, read and listen critically and participate actively in seminars and discussions (TG4).
- * To acquire the ability to disseminate and present the concepts acquired at a non-expert (TG5).

Basic

* You may consult the basic competencies students will have to achieve by the end of the Master's degree at the following address: http://estudis.uib.cat/master/comp_basiques/

Content

Theme content

- 1. What are complex systems'
- 2. Collective phenomena. Emergence
- 3. Networks as skeletons of complex systems
- 4. Nonlinearity. Thresholds. Criticality
- 5. Multi-scale phenomena. Power laws
- 6. Information, computation and measures of complexity.
- 7. Complexity in physical systems
- 8. Complexity in social systems
- 9. Complexity in ecology and life sciences

Teaching methodology

In-class work activities

Modality	Name	Typ. Grp.	Description	Hours
Theory classes	Lessons	Large group (G)	Presentation of all the course contents	11.25
Practical classes	Exercises and discussions	Large group (G)	Exercices and attendance to seminars	4.5
Assessment	Presentation	Large group (G)	Presentation of a 2 pages paper on a subject of the course	3

At the beginning of the semester a schedule of the subject will be made available to students through the UIBdigital platform. The schedule shall at least include the dates when the continuing assessment tests will be conducted and the hand-in dates for the assignments. In addition, the lecturer shall inform students as to

Academic year 2016-17

Subject 11005 - Introduction to Complex

Systems

Group 1, 1S

Teaching guide A
Language English

whether the subject work plan will be carried out through the schedule or through another way included in the Campus Extens platform.

Distance education work activities

Modality	Name	Description	Hours
Individual self- study	individual study	Understanding theoretical concepts	28
Individual self- study	writing of a paper	Preparation of a 2 pages paper on a subject of the course	28.25

Specific risks and protective measures

The learning activities of this course do not entail specific health or safety risks for the students and therefore no special protective measures are needed.

Student learning assessment

Exercises and discussions

Modality Practical classes

Technique Other methods (non-retrievable)
Description Exercices and attendance to seminars

Final grade percentage: 20%

Presentation

Modality Assessment

Technique Papers and projects (non-retrievable)

Description Presentation of a 2 pages paper on a subject of the course
Assessment criteria Quality of presentation and adequacy of answers to questions

Final grade percentage: 40%

Academic year 2016-17

Subject 11005 - Introduction to Complex

Systems

Group 1, 1S

Teaching guide A Language English

writing of a paper

Modality Individual self-study

Technique Papers and projects (non-retrievable)

Description Preparation of a 2 pages paper on a subject of the course

Assessment criteria Deepness and conciseness of the paper

Final grade percentage: 40%

Resources, bibliography and additional documentation

Basic bibliography

N. Boccara

Modeling Complex Systems

(Springer-Verlag, 2nd edition, New York, 2010)

M. Mitchell

Complexity: A Guided Tour

Oxford University Press, USA; First Edition edition (2009)

G. Nicolis, C. Nicolis

Foundations of Complex Systems: Nonlinear Dynamics, Statistical Physics, Information and Prediction

World Scientific (2007)

Complementary bibliography

Papers recommended during the course